Volume 5, Issue 3, September 2020, Page: 92-98
Virulence Factors of Bacteria Related to Ocular Infections in Non Immunocompromised Patients: Review Article
Panagiota Xaplanteri, Department of Nursing, University of Patras, Patras, Greece
Charalampos Potsios, Department of Internal Medicine, University General Hospital of Patras, Patras, Greece
Received: Aug. 22, 2020;       Accepted: Sep. 4, 2020;       Published: Sep. 10, 2020
DOI: 10.11648/j.ijidt.20200503.20      View  134      Downloads  58
Abstract
The ocular surface is constantly exposed to pathogenic bacteria. Many Gram positive and Gram negative bacteria have been implicated in ocular infections, in non immunocompromised patients, causing severe vision impairment. These microorganisms have in their quiver a variety of arrows to cause infection. The aim of this study is to list the virulence factors of the main ocular pathogens. Data were extracted from PubMed and Google Scholar. S. aureus and Streptococci, Bacillus cereus and Corynebacterium (non-diphtheriae) are the main culprits as far as Gram positive bacteria are concerned. S. aureus causes infections of the lacrimal apparatus, cornea and eyelids, conjunctivitis, keratitis, and endophthalmitis. Streptococcus pneumoniae, Streptococcus pyogenes, Enterococcus and Streptococcus viridians are isolated from post injection endophthalmitis cases. S. pneumoniae is most involved in keratitis, conjunctivitis, and endophthalmitis. Streptococcus pyogenes is most involved in blepharitis and hospital acquired conjunctivitis in neonates in the intensive care unit. Enterococcus faecalis is implicated in postoperative endophthalmitis cases. Corynebacterium (non-diphtheriae) species are involved mainly in infections complicating cataract surgery, keratoplasty, and vitrectomy. Bacillus species provoke conjunctivitis, keratitis and post-traumatic endophthalmitis. Bacillus cereus can cause rapidly destructive endophthalmitis. Among Gram negative bacteria, Neisseria gonorrhoeae, Pseudomonas aeruginosa, Chlamydia trachomatis, and Bartonella species are major ocular pathogens, responsible for severe ocular damage. Gonococcal conjunctivitis (GC) is still a cause of blindness in some developing countries. When it occurs in neonates, it is called gonococcal ophthalmia neonatorum. P. aeruginosa is related to contact lens-associated keratitis. Chlamydia trachomatis is the culprit of trachoma and inclusion conjunctivitis. Bartonella henselae causes bartonellosis or cat scratch disease, or cat scratch fever. Eye infection includes optic neuropathy and neuroretinitis. When the eye is the primary site of inoculation, the patients are diagnosed with Parinaud oculo-glandular syndrome (infection of the conjunctiva, eyelid and adjacent skin with regional lymphadenopathy). Chronic Bartonella infection provokes blurred vision, photophobia and eye irritation. Comprehension of the mechanism of infection, caused by these pathogens, is crucial in diagnosis and treatment.
Keywords
Ocular Infection, Non Immunocompromised Patients, Virulence Factors, Gram Positive Bacteria, Gram Negative Bacteria
To cite this article
Panagiota Xaplanteri, Charalampos Potsios, Virulence Factors of Bacteria Related to Ocular Infections in Non Immunocompromised Patients: Review Article, International Journal of Infectious Diseases and Therapy. Vol. 5, No. 3, 2020, pp. 92-98. doi: 10.11648/j.ijidt.20200503.20
Copyright
Copyright © 2020 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
Al-Najjar, M. A. A., Altah, M., Aljakhim, D. (2019). An Overview of Ocular Microbiology: Ocular Microbiota, the Effect of Contact Lenses and Ocular Disease. Arch Phar & Pharmacol Res, 1 (5): 2019. APPR. MS. ID. 000522. DOI: 10.33552/APPR.2019.01.000522.
[2]
Callegan, M. C., Engelbert, M., Parke II, D. W., Jett, B. D., Gilmore, M. (2002). Bacterial Endophthalmitis: Epidemiology, Therapeutics, and Bacterium-Host Interactions. Clinical Microbiology Reviews, 15 (1): 111–124. DOI: 10.1128/CMR.15.1.111-124.2002.
[3]
Astley, R., Miller, F. C., Mursalin, H., Coburn, P. S., Callegan, M. C. (2019). An Eye on Staphylococcus aureus Toxins: Roles in Ocular Damage and Inflammation. Toxins (Basel), 11 (6): 356. doi: 10.3390/toxins11060356.
[4]
Krishna, S., Miller, L. S. (2012). Host-pathogen Interactions Between the Skin and Staphylococcus Aureus. Curr Opin Microbiol, 15 (1): 28–35. doi: 10.1016/j.mib.2011.11.003.
[5]
Otto, M. (2014). Staphylococcus Aureus Toxins. Curr Opin Microbiol, 17: 32-37. doi: 10.1016/j.mib.2013.11.004.
[6]
Miles, G., Movileanu, L., Bayley, H. (2002). Subunit composition of a bicomponent toxin: staphylococcal leukocidin forms an octameric transmembrane pore. Protein science: a publication of the Protein Society, 11 (4), 894–902. https://doi.org/10.1110/ps.4360102.
[7]
Kobayashi, S. D., DeLeo, F. R. (2013). Staphylococcus aureus protein A promotes immune suppression. mBio, 4 (5): e00764-13. doi: 10.1128/mBio.00764-13.
[8]
Kochan, T., Singla, A., Tosi, J., Kumar, A. (2012). Toll-like receptor 2 ligand pretreatment attenuates retinal microglial inflammatory response but enhances phagocytic activity toward Staphylococcus aureus. Infect Immun, 80: 2076–2088. [PubMed: 22431652].
[9]
Teweldemedhin, M., Gebreyesus, H., Atsbaha, A. H., Asgedom, S. W., Saravanan, M. (2017). Bacterial profile of ocular infections: a systematic review. BMC ophthalmology, 17 (1): 212. https://doi.org/10.1186/s12886-017-0612-2.
[10]
Benton, A. H., Marquart, M. E. (2018). The Role of Pneumococcal Virulence Factors in Ocular Infectious Diseases. Interdisciplinary perspectives on infectious diseases, https://doi.org/10.1155/2018/2525173.
[11]
Bagnoli, F., Moschioni, M., Donati, C., Dimitrovska, V., Ferlenghi,. I, Facciotti, C., Muzzi, A., Giusti, F., Emolo, C., Sinisi, A., Hilleringmann, M., Pansegrau, W., Censini, S., Rappuoli, R., Covacci, A., Masignani, V., Barocchi, M. A. (2008). A second pilus type in Streptococcus pneumoniae is prevalent in emerging serotypes and mediates adhesion to host cells. J Bacteriol, 190: 5480–5492. [PubMed: 18515415].
[12]
Barocchi, M. A., Ries, J., Zogaj, X., Hemsley, C., Albiger, B., Kanth, A., Dahlberg, S., Fernebro, J., Moschioni, M., Masignani, V., Hultenby, K., Taddei, A. R., Beiter, K., Wartha, F., von Euler, A., Covacci, A., Holden, D. W., Normark, S., Rappuoli, R., Henriques-Normark, B. (2006). A pneumococcal pilus influences virulence and host inflammatory responses. Proc Natl Acad Sci USA, 103: 2857–2862. [PubMed: 16481624]).
[13]
Nelson, A. L., Ries, J., Bagnoli, F., Dahlberg, S., Fälker, S., Rounioja, S., Tschöp, J., Morfeldt, E., Ferlenghi, I., Hilleringmann, M., Holden, D. W., Rappuoli, R., Normark, S., Barocchi, M. A., Henriques-Normark, B. (2007). RrgA is a pilus-associated adhesin in Streptococcus pneumoniae. Mol Microbiol., 66: 329– 340. [PubMed: 17850254]).
[14]
Hynes, W., Sloan, M. (2016). Secreted Extracellular Virulence Factors. In: Ferretti JJ, Stevens DL, Fischetti VA, editors. Streptococcus pyogenes: Basic Biology to Clinical Manifestations [Internet]. Oklahoma City (OK): University of Oklahoma Health Sciences Center; 2016-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK333411/.
[15]
Fischetti, V. A. (2016). M Protein and Other Surface Proteins on Streptococci. In: Ferretti JJ, Stevens DL, Fischetti VA, editors. Streptococcus pyogenes: Basic Biology to Clinical Manifestations [Internet]. Oklahoma City (OK): University of Oklahoma Health Sciences Center; 2016-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK333431/.
[16]
Lancefield, R. C. (1959). Persistence of type-specific antibodies in man following infection with group A streptococci. The Journal of Experimental Medicine, 110 (2): 271–292.
[17]
Lancefield, R. C. (1962). Current knowledge of the type-specific M antigens of group A streptococci. The Journal of Immunology, 89 (3): 307–313.
[18]
Eguchi, H. (2013). Open access peer-reviewed chapter. Ocular Infections Caused by Corynebacterium Species. DOI: 10.5772/56214.
[19]
Callegan, M. C., Parkunan, S. M., Blake Randall, C, Coburn, P. S., Miller, F. C., LaGrow, A. L., Astley, R. A., Land, C., Oh, S. Y., Schneewind, O. (2017). The Role of Pili in Bacillus cereus Intraocular Infection. Exp Eye Res., 159: 69–76. doi: 10.1016/j.exer.2017.03.007.
[20]
Ton-That, H., Schneewind, O. (2004). Assembly of pili in Gram-positive bacteria. Trends Microbiol., 12: 228–234. [PubMed: 15120142].
[21]
Mandell, G. L., Bennett, J. E., Dolin, R. (2010). Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases, 2nd edn, Churchil Livingstone Elsevier.
[22]
Costumbrado, J., Ng, D. K., Ghassemzadeh, S. (2020). Gonococcal Conjunctivitis. In: StatPearls. Treasure Island (FL): StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK459289/.
[23]
Acharya, T. (2020). Virulence Factors of Neisseria gonorrhoeae (gonococcus) and their roles, https://microbeonline.com/virulence-factors-of-neisseria-gonorrhoeae/.
[24]
Neisseria gonorrhoeae (“The Gonococcus”)– Gonorrhea http://web.biosci.utexas.edu/field/mic361a/mic361/GC.htm.
[25]
Edwards, J. L., Apicella, M. A. (2004). The molecular mechanisms used by Neisseria gonorrhoeae to initiate infection differ between men and women. Clin Microbiol Rev., 17 (4): 965-981. doi: 10.1128/CMR.17.4.965-981.2004.
[26]
Xaplanteri, P., Lagoumintzis, G., Dimitracopoulos, G., Paliogianni, F. (2009). Eur. J. Immunol., 39: 730–740. DOI 10.1002/eji.200838872.
[27]
Veesenmeyer, J. L., Hauser, A. R., Lisboa, T., Rello, J. (2009). Pseudomonas aeruginosa Virulence and Therapy: Evolving Translational Strategies. Crit Care Med., 37 (5): 1777–1786. doi: 10.1097/CCM.0b013e31819ff137.
[28]
Alarcon, I., Evans, D. J., Fleiszig, S. M. (2009). The role of twitching motility in Pseudomonas aeruginosa exit from and translocation of corneal epithelial cells. Invest Ophthalmol Vis Sci., 50: 2237–44. [PubMed: 19136693].
[29]
Zolfgahar, I., Evans, D. J., Fleiszig, S. M. (2003). Twitching motility contributes to the role of pili in corneal infection caused by Pseudomonas aeruginosa. Infect Immun., 71: 5389–93. [PubMed: 12933890].
[30]
Rodis, N., Tsapadikou, V. K., Potsios, C., Xaplanteri, P. (2020) Resistance Mechanisms in Bacterial Biofilm Formations: A Review. J Emerg Intern Med, 4 (2: 30): 1-8. DOI: 10.36648/2576-3938.100030.
[31]
Satpathy, G., Behera, H. S., Ahmed, N. H. (2017). Chlamydial eye infections: Current perspectives. Indian J Ophthalmol., 65 (2): 97-102. doi: 10.4103/ijo.IJO_870_16.
[32]
Mada, P. K., Zulfiqar, H., Joel Chandranesan, A. S. Bartonellosis. [Updated 2020 Apr 28]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK430874/.
[33]
Ksiaa, I., Abroug, N., Mahmoud, A., Zina, S., Hedayatfar, A., Attia, S., Khochtali, S., Khairallah, M. (2019). Update on Bartonella neuroretinitis. Journal of Current Ophthalmology, 31 (3): 254-261. https://doi.org/10.1016/j.joco.2019.03.005.
[34]
Angelakis, E., Raoult, D. (2014). Pathogenicity and treatment of Bartonella infections. Int J Antimicrob Agents http://dx.doi.org/10.1016/j.ijantimicag.2014.04.006).
[35]
McCord, A. M. (2006). Endothelial cell mediators of angiogenesis in Bartonella henselae infection. Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/2620.
[36]
Matera, G., Quirino, A., Lamberti, A. G., Focà, A., Liberto, M. C. Bartonellae: Stealthy Pathogens or Novel Drug Factories (Letter to the Editorial Board of Biokhimiya/Biochemistry (Moscow)) DOI: 10.1134/S0006297911090136).
[37]
Deng, H., Pang, Q., Zhao, B., Vayssier-Taussat, M. (2018). Molecular Mechanisms of Bartonella and Mammalian Erythrocyte Interactions: A Review. Front. Cell. Infect. Microbiol., 8: 431. doi: 10.3389/fcimb.2018.00431.
Browse journals by subject